From the journals: MCP
We offer a selection of papers on a variety of topics recently published in the journal Molecular & Cellular Proteomics.
Using co-elution to study protein interactions
Studying how the vast network of proteins and molecules in a cell interact, a discipline known as interactomics, is crucial to researchers’ fundamental understanding of biological processes and for the development of new medicines and biotechnology. Among the technical strategies for mapping the interactome, co-elution is a global protein interaction mapping method. However, strategies vary across studies that utilize co-elution, depending on experimental considerations.
In a review in the journal Molecular & Cellular Proteomics, Daniela Salas and colleagues at the University of British Columbia delineate co-elution methods used to map protein–protein interaction networks and discuss important considerations in designing co-elution studies, such as the choice of separation method and how to analyze co-elution profiling studies. The researchers also discuss the benefits of co-elution versus other mapping methods, including the time and resources required to perform the protein mapping and the number of protein interactions that can be explored.
Confident identification of citrullinated peptides
Citrulline is an amino acid not encoded in the genome. It is generated by a post-translational modification to the amino acid arginine, a process known as citrullination. In recent years, scientists concerned with the immune system have been paying attention to citrullination because of its role in inducing anti-citrullinated proteins/peptide antibodies, which results in an autoimmune reaction where the host’s immune system attacks its healthy tissue. The bacteria Porphyromonas gingivalis generates citrullinated epitopes in the periodontium, which contributes to chronic periodontitis and recently has been linked to rheumatoid arthritis.
Using a new two-dimensional heptafluorobutyric acid–based separation system combined with liquid chromatography–mass spectrometry, Daniel Larsen and colleagues at the University of Southern Denmark analyzed the outer membrane vesicles and other related elements of P. gingivalis to identify 79 citrullinated proteins with 161 citrullination sites. These results were reported in a paper published in the journal Molecular & Cellular Proteomics. This work establishes a method for identifying citrullinated proteins that will advance development of treatments for human autoimmune and inflammatory diseases.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Liver enzyme holds key to adjusting to high-protein diets
Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.