JLR: miRNAs take a wrecking ball to colorectal cancer
Analogies for cancer abound, from a military-style battle against villainous cells that mutate and harm the peaceful host to a garden where doctors pluck out the weedy cancer and nourish the helpful immune cells. A laboratory in the molecular oncology group at the Madrid Institute of Advanced Studies, or IMDEA, Research Institute on Food and Health Sciences in Spain sometimes views cancer as an illegal construction project. Researchers who focus on the role of lipid metabolism in cancer describe the disease as an unauthorized building that requires delivery of construction materials (nutrients) as the structure (tumor) grows. Their goal is to understand how to block delivery and use of these materials.
In a paper in the Journal of Lipid Research, these researchers describe how they identified unique microRNA networks that may limit delivery of these resources to cancerous cells and help combat the disease.
The “construction materials” in cancer are often lipids that provide energy for ever-growing cancer cells. Many of these cells have altered lipid metabolism to enable rapid growth and carcinogenesis in a harsh tumor microenvironment. IMDEA researcher Ana Ramirez de Molina and her Ph.D. student, Silvia Cruz Gil, explain that the group previously identified a key pathway in altered lipid metabolism, known as the abnormal acyl-CoA synthetase/stearoyl-CoA desaturase, or ACSL/SCD, lipid network, which promotes invasion and migration of colorectal cancer cells. Inhibitors of the ACSL/SCD network actually reduce cancer cell viability. This network could present a novel colorectal cancer therapy target, so the group wanted to identify inhibitory miRNAs, as these have emerged as “potent epigenetic modulators of cellular homeostasis,” Ramirez de Molina said. In the cancer-as-construction metaphor, these miRNAs are the city workers that come in to block shipments and stop work on the illegal building.
In their latest project, the group sought to identify miRNAs specific to the ACSL/SCD network that combat cancer cells. In extensive bioinformatics assays using miRNA-detecting algorithms, they identified 31 miRNAs that may bind a region of mRNA, leading to reduced expression of the ACSL/SCD network. The researchers then confirmed the roles of miRNAs with RNA and protein detection techniques. They identified three main miRNAs that reduced both RNA and protein expression: miR-544a, miR-142 and miR-19b.
The expression of miRNA-19b corresponded to disease outcome: low levels of expression were correlated with increased symptoms and disease progression. The group used cell invasion assays and biochemical techniques to show that miRNA-19b expression reduces adhesion and invasion through direct targeting of the ACSL/SCD network. They also found that miRNA-19b expression reduced lipid storage and respiratory capacity — curtailing metaphorical resources for the ever-growing building. Treating patients with miRNAs like 19b potentially would provide targeted, tailored reduction of oncogene expression to reduce cancer progression.
![](http://www.asbmb.org/imagearchive/76243/Figure2.jpg)
miRNA levels also may indicate disease severity and give physicians a clearer understanding of individual patients’ cases. Ramirez de Molina encourages health systems to use miRNA detection especially for colorectal cancer, because it often shows minimal symptoms until the disease has spread extensively. She is excited about tools like miRNAs. “The possibility to detect them as early detection biomarkers and to modulate their action would represent a promising and very advantageous tool against cancer progression,” she said.
Further research on therapeutic use of miRNAs is needed, and these findings provide excellent fuel for such studies. The lab now is studying the ACSL/SCD network in complex tumor organoids of colorectal cancer as well as tumors in other types of cancer. Their discovery of these networks and their respective miRNAs could help identify more city workers in the body that will block progress of this illegal construction; future work likely will shed more light on the networks delivering fuel and supplies to harmful cancer cells.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
![From the JBC archives: Madness, indoles and mercury-based cathartics](/getattachment/e26ef62e-685d-450f-b5e4-113430cfb888/JBC-archives-02-11-25-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
From the JBC archives: Madness, indoles and mercury-based cathartics
A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.
![From the journals: JBC](/getattachment/05f125e8-aa95-4a9e-bd9c-896b3f72923c/FTJ-JBC-02-07-25-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
From the journals: JBC
Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.
![Becoming a scientific honey bee](/getattachment/7cb3cada-2249-4121-a9f5-63aa5bd6f213/Becoming-scientific-honey-bee-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Becoming a scientific honey bee
At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.
![Mutant RNA exosome protein linked to neurodevelopmental defects](/getattachment/dbfd7c8c-5104-4903-8e97-2c82f9d97262/Mutant-RNA-exosome-protein-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Mutant RNA exosome protein linked to neurodevelopmental defects
Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.
![Study sheds light on treatment for rare genetic disorder](/getattachment/0f757086-65aa-452a-a87e-e2f381aee087/Treatment-for-rare-genitic-disorder-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Study sheds light on treatment for rare genetic disorder
Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.
![Examining mechanisms of protein complex at a basic cell biological level](/getattachment/f09ff397-048a-494d-9eea-d4b5eae8938d/Munson-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Examining mechanisms of protein complex at a basic cell biological level
Mary Munson is co-corresponding author on a study revealing functions and mechanisms of the exocyst that are essential to how molecules move across a membrane through vesicles in a cell.