News

Moderna’s experimental cancer vaccine treats but doesn’t prevent melanoma

A biochemist explains how it works
Mark R. O'Brian
Jan. 28, 2023

Media outlets have reported the encouraging findings of clinical trials for a new experimental vaccine developed by the biotech company Moderna to treat an aggressive type of skin cancer called melanoma.

Although this is potentially very good news, it occurred to me that the headlines may be unintentionally misleading. The vaccines most people are familiar with prevent disease, whereas this experimental new skin cancer vaccine treats only patients who are already sick. Why is it called a vaccine if it does not prevent cancer?

I am a biochemist and molecular biologist studying the roles that microbes play in health and disease. I also teach cancer genetics to medical students and am interested in how the public understands science. While preventive and therapeutic vaccines are administered for different health care goals, they both train the immune system to recognize and fight off a specific disease agent that causes illness.

Melanoma is an aggressive form of skin cancer.
Melanoma is an aggressive form of skin cancer.

How do preventive vaccines work?

Most vaccines are administered to healthy people before they get sick to prevent illnesses caused by viruses or bacteria. These include vaccines that prevent polio, measles, COVID-19 and many other diseases. Researchers have also developed vaccines to prevent some types of cancers that are caused by such viruses as the human papillomaviruses and Epstein-Barr virus.

Your immune system recognizes objects such as certain microbes and allergens that do not belong in your body and initiates a series of cellular events to attack and destroy them. Thus, a virus or bacterium that enters the body is recognized as something foreign and triggers an immune response to fight off the microbial invader. This results in a cellular memory that will elicit an even faster immune response the next time the same microbe intrudes.

The problem is that sometimes the initial infection causes serious illness before the immune system can mount a response against it. While you may be better protected against a second infection, you have suffered the potentially damaging consequences of the first one.

This is where preventive vaccines come in. By introducing a harmless version or a portion of the microbe to the immune system, the body can learn to mount an effective response against it without causing the disease.

For example, the Gardasil-9 vaccine protects against the human papillomavirus, or HPV, which causes cervical cancer. It contains protein components found in the virus that cannot cause disease but do elicit an immune response that protects against future HPV infection, thereby preventing cervical cancer.

The HPV vaccine can prevent cervical cancer.

How does the Moderna cancer vaccine work?

Unlike cervical cancer, skin melanoma isn’t caused by a viral infection, according the latest evidence. Nor does Moderna’s experimental vaccine prevent cancer as Gardasil-9 does.

The Moderna vaccine trains the immune system to fight off an invader in the same way preventive vaccines most people are familiar with do. However, in this case the invader is a tumor, a rogue version of normal cells that harbors abnormal proteins that the immune system can recognize as foreign and attack.

What are these abnormal proteins and where do they come from?

All cells are made up of proteins and other biological molecules such as carbohydrates, lipids and nucleic acids. Cancer is caused by mutations in regions of genetic material, or DNA, that encode instructions on what proteins to make. Mutated genes result in abnormal proteins called neoantigens that the body recognizes as foreign. That can trigger an immune response to fight off a nascent tumor. However, sometimes the immune response fails to subdue the cancer cells, either because the immune system is unable to mount a strong enough response or the cancer cells have found a way to circumvent the immune system’s defenses.

Moderna’s experimental melanoma vaccine contains genetic information that encodes for portions of the neoantigens in the tumor. This genetic information is in the form of mRNA, which is the same form used in the Moderna and Pfizer-BioNtech COVID-19 vaccines. Importantly, the vaccine cannot cause cancer, because it encodes for only small, nonfunctional parts of the protein. When the genetic information is translated into those protein pieces in the body, they trigger the immune system to mount an attack against the tumor. Ideally, this immune response will cause the tumor to shrink and disappear.

Notably, the Moderna melanoma vaccine is tailor-made for each patient. Each tumor is unique, and so the vaccine needs to be unique as well. To customize vaccines, researchers first biopsy the patient’s tumor to determine what neoantigens are present. The vaccine manufacturer then designs specific mRNA molecules that encode those neoantigens. When this custom mRNA vaccine is administered, the body translates the genetic material into proteins specific to the patient’s tumor, resulting in an immune response against the tumor.

Identifying the neoantigens of a tumor can help researchers personalize cancer vaccines.

Combining vaccination with immunotherapy

Vaccines are a form of immunotherapy, because they treat diseases by harnessing the immune system. However, other immunotherapy cancer drugs are not vaccines because, while they also stimulate the immune system, they do not target specific neoantigens.

In fact, the Moderna vaccine is co-administered with the immunotherapy drug pembrolizumab, which is marketed as Keytruda. Why are two drugs needed?

Certain immune cells called T-cells have molecular accelerator and brake components that serve as checkpoints to ensure they are revved up only in the presence of a foreign invader such as a tumor. However, sometimes tumor cells find a way to keep the T-cell brakes on and suppress the immune response. In these cases, the Moderna vaccine correctly identifies the tumor, but T-cells cannot respond to it.

Pembrolizumab, however, can bind directly to a brake component on the T-cell, inactivating the brake system and allowing the immune cells to attack the tumor.

Not a preventive cancer vaccine

So why can’t the Moderna vaccine be administered to healthy people to prevent melanoma before it arises?

Cancers are highly variable from person to person. Each melanoma harbors a different neoantigen profile that cannot be predicted in advance. Therefore, a vaccine cannot be developed in advance of the illness.

The experimental mRNA melanoma vaccine, currently still in early-phase clinical trials, is an example of the new frontier of personalized medicine. By understanding the molecular basis of diseases, researchers can explore how their underlying causes vary among people, and offer personalized therapeutic options against those diseases.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Mark R. O'Brian

Mark R. O'Brian is a professor and the chair of the biochemistry department at the University of Buffalo's Jacobs School of Medicine and Biomedical Sciences.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.