Annual Meeting

Myers finds a new way
to look at proteins

He was named an MCP early-career investigator
Adriana Bankston
March 1, 2019

Growing up as an aspiring artist, Sam Myers became interested in science later in life. When he took a human biology class at his junior college, it blew him away.

Sam MyersSam Myers and his team developed genomic locus proteomics, which researchers can use to uncover mechanisms that underlie genetic phenomena.

Myers majored in biochemistry with an emphasis in chemistry at California Polytechnic State University and then did graduate work at the University of California, San Francisco, where he studied O-GlcNAc signaling in pluripotent stem cells in Al Burlingame’s lab. He did his postdoctoral research in Steven Carr’s proteomics laboratory at the Broad Institute in Cambridge, Massachusetts, where he is now a research scientist.

Myers knew he wanted to “bridge biology and technology development,” he said, especially as “science moves toward requiring more interdisciplinary approaches to research.”

He has developed a unique skill set to bridge this gap in the field of proteomics, an area of research with great potential for discovery, he said. “Many people work at the genomics level measuring RNA levels, but proteins and proteomes haven’t been studied nearly as much.”

Many sample types do not have enough material for proteomic analyses, so Myers has reduced the sample requirements needed to study the proteome, enabling researchers to answer new biological questions by looking at proteins at a single locus in the genome.

“This has been needed for a long time,” he said, and he just “had the perfect alignment” of scientific expertise in Cambridge. He was able to draw on the skills of Alice Ting (APEX2), Feng Zhang (Cas9) and Carr (quantitative proteomics) to perform this work.

In addition to doing research, Myers enjoys being part of outreach programs that get children interested in science, technology, engineering and math. He is able to connect with youngsters in part, he said, because “I don’t look like a typical scientist.”

When children see scientists who look like they could be artists or in a motorcycle gang, it makes the profession more accessible to more types of people, he said, and diversity is paramount for scientific progress.

Finding proteins at a genomic locus

Sam Myers’ work focuses on developing proteomic approaches to study transcriptional regulation and cellular differentiation. He recently reported a method to discover proteins associated with a single genomic locus within the native cellular context.

Myers and his team developed a dCas9-APEX2 fusion to enrich and identify proteins interacting with specific genomic loci in a novel method that is not dependent on antibodies or genomic engineering. Myers believes this method, termed genomic locus proteomics, will enable researchers to uncover the mechanisms that underlie genomic phenomena, such as single nucleotide polymorphisms identified in genomewide association studies or enhancer-promoter interactions and the proteins that drive their function.

At the American Society for Biochemistry and Molecular Biology annual meeting, Myers will talk about the tools and approaches he develops to understand gene expression. This includes a study published in the journal Nature Methods looking at proteins associated with important oncogene promoters and how this method can be extended to better characterize single genomic loci in cells.

 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Adriana Bankston

Adriana Bankston is a senior fellow in science policy at the Federation of American Scientists. She is also strategic advisor at the Journal of Science Policy and Governance.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Finding a symphony among complex molecules
Profile

Finding a symphony among complex molecules

April 23, 2025

MOSAIC scholar Stanna Dorn uses total synthesis to recreate rare bacterial natural products with potential therapeutic applications.

Sketching, scribbling and scicomm
Science Communication

Sketching, scribbling and scicomm

April 16, 2025

Graduate student Ari Paiz describes how her love of science and art blend to make her an effective science communicator.

Embrace your neurodivergence and flourish in college
Diversity

Embrace your neurodivergence and flourish in college

April 14, 2025

This guide offers practical advice on setting yourself up for success — learn how to leverage campus resources, work with professors and embrace your strengths.

Survival tools for a neurodivergent brain in academia
Essay

Survival tools for a neurodivergent brain in academia

April 10, 2025

Working in academia is hard, and being neurodivergent makes it harder. Here are a few tools that may help, from a Ph.D. student with ADHD.

Quieting the static: Building inclusive STEM classrooms
Interview

Quieting the static: Building inclusive STEM classrooms

April 8, 2025

Christin Monroe, an assistant professor of chemistry at Landmark College, offers practical tips to help educators make their classrooms more accessible to neurodivergent scientists.

Hidden strengths of an autistic scientist
Essay

Hidden strengths of an autistic scientist

April 3, 2025

Navigating the world of scientific research as an autistic scientist comes with unique challenges —microaggressions, communication hurdles and the constant pressure to conform to social norms, postbaccalaureate student Taylor Stolberg writes.