Award

Eisenberg lauded for work on amyloid fiber structure

He won the ASBMB's 2015 Bert and Natalie Vallee Award in Biomedical Science
Umesh D. Wankhade
By Umesh D. Wankhade
March 1, 2015

David Eisenberg, a professor at the University of California, Los Angeles, is the second winner of the American Society for Biochemistry and Molecular Biology’s Bert and Natalie Vallee Award in Biomedical Science.

eisenberg-web.jpg
"How nice it is to receive an award named for a scientist whose lectures I heard when I was an undergraduate. But my name as the sole recipient masks the fact that the recognized work is the product of more than a dozen scientists in our group. Perhaps more than most laboratories, we work as a group, with diverse backgrounds and skills combining to produce each finding. We tackle hard problems, gaining confidence from each other that we can overcome the obstacles that we invariably encounter along the path. Much of my pleasure in science comes from our cooperative mode of scientific discovery." — DAVID EISENBERG

The award was established by the Bert and N. Kuggie Vallee Foundation in 2012 to recognize established scientists with outstanding accomplishments in basic biomedical research. Eisenberg’s research focuses primarily on protein interactions as well as the structural underpinnings for the conversion of normal proteins to the amyloid state and the conversion of prions to the infectious state.

Sabeeha Merchant and James Bowie at UCLA, who nominated Eisenberg for the award, said in their nomination letter, “David’s achievements are truly remarkable, not only because of their enormous fundamental impact on the fields of medicine, but also because success was so improbable. He has transformed the field of amyloid diseases and is exceedingly deserving of this recognition.

In 2005, Eisenberg’s group published the first atomic-resolution structure of an amyloid fiber. His work led to other researchers determining the atomic-level structures of more than 100 other fibers. These structure determinations have revolutionized the field.

Eisenberg’s work enabled the development of algorithms to predict segments of proteins with high propensity to form amyloid fibers and provide useful hypotheses for amyloid-forming mechanisms in many disease-related proteins. His research also opened up the possibility of true atomic-level drug-design approaches to prevent fiber formation. Eisenberg’s group has worked on drug design too, and several candidates are in development.

Although Eisenberg started his career looking at protein structure and binding affinity, he developed an interest in the role of aberrant proteins in neurodegenerative diseases. Eventually, his combined passion for medicine and basic research led him to consider fundamental scientific questions about neurodegenerative diseases.

Eisenberg began his career as an undergraduate at Harvard University under the tutelage of protein scientist John Edsall. He became interested in the computational and physical sciences as well as the biochemical sciences. Eisenberg went on to get a D. Phil. at Oxford University in the U.K. In 1989, he was elected to the National Academy of Sciences. He has received numerous awards, such as the Amgen Award of the Protein Society in 2000 and the Harvey International Prize in Human Health in 2009.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Umesh D. Wankhade
Umesh D. Wankhade

Umesh D. Wankhade is a postdoctoral fellow at the National Institute of Health's diabetes, endocrinology and obesity branch.

Related articles

Adults grow new brain cells
Aswathy Ammothumkandy, Charles Liu & Michael A. Bonaguidi
Upcoming opportunities
ASBMB Today Staff
From the journals: JBC
Emily Ulrich

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

How military forensic scientists use DNA to solve mysteries
Jobs

How military forensic scientists use DNA to solve mysteries

Jan. 10, 2025

Learn how two analysts at the Armed Forces DNA Identification Laboratory use molecular biology and genetics to identify the remains of fallen troops.

A decade of teaching the Art of Science Communication
Feature

A decade of teaching the Art of Science Communication

Jan. 7, 2025

Why now, more than ever, scientists must be able to explain what they do to non-scientists.

Of genes, chromosomes and oratorios
Profile

Of genes, chromosomes and oratorios

Jan. 1, 2025

Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.

In memoriam: Margaret Fonda
In Memoriam

In memoriam: Margaret Fonda

Dec. 30, 2024

She taught biochemistry in a male-dominated department at a medical school and was an ASBMB member for more than 50 years.

Sung honored for research; Sliger, Young named astronaut scholars
Member News

Sung honored for research; Sliger, Young named astronaut scholars

Dec. 23, 2024

Patrick Sung receives the 2024 Basser Global Prize from the Basser Center for BRCA at Penn Medicine. A foundation created by Mercury 7 astronauts awards scholarships to Shelby Sliger and Tara Young.

‘Our work is about science transforming people’s lives’
Interview

‘Our work is about science transforming people’s lives’

Dec. 17, 2024

Ann West, chair of the ASBMB Public Affairs Advisory Committee, sits down Monica Bertagnolli, director of the National Institutes of Health.