Feature

Evolutionary constraints on disordered proteins

Laurel Oldach
Dec. 5, 2022

Roughly 40% of the proteome is intrinsically disordered; these proteins and domains behave differently from structured proteins, rarely adopting just one stable structure. Instead, it can be useful to think of them dynamically moving through a wide range of favorable conformations known as an ensemble.

About 40%25 of the proteome is thought to be disordered. Researchers are beginning to explore the evolutionary rules that govern these proteins.
About 40% of the proteome is thought to be disordered. Researchers are beginning to explore the evolutionary rules that govern these proteins.

Many structured proteins are under evolutionary pressure that constrains how much they can change over time. Too large a shift in amino acid sequence may compromise function, unless a secondary change happens to compensate. For intrinsically disordered proteins, however, it is more difficult to determine whether ensembles undergo the same selection pressure. Multiple sequence alignments often show significant changes to a disordered region’s primary amino acid sequence, sometimes including dramatic changes in length.

“If a protein is under selection, you expect (sequence) conservation, and we couldn’t see it,” said Lucía Chemes, a professor at Argentina’s Universidad Nacional de San Martín. Still, studies of disordered proteins have made it clear over time that they have important conserved functions. Chemes said, “There’s evidence that there must be conservation of function — so how does this happen, if the sequence changes so much?”

To find out, Chemes’ team chose as a model system an adenovirus protein that disrupts a host transcription–repression complex. The viral protein must work rapidly early in infection, when its levels are low, to hijack the host cell cycle. Therefore, high-affinity binding is very important.

How much the viral protein can disrupt the complex depends on two short linear motifs that associate directly with the translation repressor, but the lab found that the strength of binding is also governed by an intrinsically disordered region that connects the two linear motifs. Using proteins constructed of the two motifs separated by different linkers, the researchers confirmed that the linkers have the optimal length to tether the linear motifs closely enough together to reach their binding sites and boost binding affinity at both sites. Any longer, and the linear motifs could flop through too many conformations, missing their binding target, while a shorter linker prevented both linear motifs from binding at once.

When comparing homologous proteins from viruses targeting different mammalian species, whose linear sequences varied in length from 40 to 75 amino acids, the lab was surprised to find that all-atom structural modeling predicted a consistent end-to-end distance. Closer packing and lower density of charge per residues enabled longer linear sequences to pack into the same length as shorter ones. That confirmed that evolutionary constraints on the ensemble structure ensured its function, even when its sequence fluctuated.

“It’s clear that there’s more conserved than meets the eye when you see an alignment,” Chemes said. But the conserved feature defining an ensemble may not always be end-to-end distance. The next challenge for the field will be to identify the features that need to be conserved in each intrinsically disordered protein.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

Sketching, scribbling and scicomm
Science Communication

Sketching, scribbling and scicomm

April 16, 2025

Graduate student Ari Paiz describes how her love of science and art blend to make her an effective science communicator.

Embrace your neurodivergence and flourish in college
Diversity

Embrace your neurodivergence and flourish in college

April 14, 2025

This guide offers practical advice on setting yourself up for success — learn how to leverage campus resources, work with professors and embrace your strengths.

Survival tools for a neurodivergent brain in academia
Essay

Survival tools for a neurodivergent brain in academia

April 10, 2025

Working in academia is hard, and being neurodivergent makes it harder. Here are a few tools that may help, from a Ph.D. student with ADHD.

Hidden strengths of an autistic scientist
Essay

Hidden strengths of an autistic scientist

April 3, 2025

Navigating the world of scientific research as an autistic scientist comes with unique challenges —microaggressions, communication hurdles and the constant pressure to conform to social norms, postbaccalaureate student Taylor Stolberg writes.

Black excellence in biotech: Shaping the future of an industry
Observance

Black excellence in biotech: Shaping the future of an industry

Feb. 28, 2025

This Black History Month, we highlight the impact of DEI initiatives, trailblazing scientists and industry leaders working to create a more inclusive and scientific community. Discover how you can be part of the movement.

Attend ASBMB’s career and education fair
ASBMB Annual Meeting

Attend ASBMB’s career and education fair

Feb. 24, 2025

Attending the ASBMB career and education fair is a great way to explore new opportunities, make valuable connections and gain insights into potential career paths.