Essay

Water takes center stage

Danielle Guarracino
Oct. 24, 2024

As a young scientist, I was told by my instructors that water was the “universal solvent.” Then, a few years later, that statement got a contingency — apparently, this was mostly just the case in life science. For a vast number of chemicals that are hydrophobic, water is more or less the enemy. I have seen my inorganic, organometallic colleagues working in glove boxes trying to keep out water as much as possible.

When I began to submerge myself in biochemistry studies, I was amazed at how important water is to the function of biological molecules.  For example, proteins often fold so that their hydrophobic interiors are buried away from the contents of the cell, which are water-based. These very structures dictate the function of those proteins and can lead to enzyme active sites, vast intracellular architectures and compartmentalization.

So, we have the intricate workings of our cells, organs and tissues able to produce sight, hearing, motion, thought, language and all our critical activities. Each of these activities can be traced back, at least in part, to proteins whose functions are directly affected by their structure, which, in turn, is influenced by water.

I can think of a time or two that relates the power of water and its importance in biology and biochemistry to my own life.

The final step

During the first moments in my research group in graduate school, I was converting alpha amino acids (the type found in nature) to beta-3-amino acids. At that time, foldamers (non-natural folded oligomers) were a burgeoning field. My first tasks were to synthesize a library of beta-amino acids using the alpha versions as starting materials, then use these as building blocks in a long chain to make artificial peptides with nonnatural backbones. Each synthesis required two steps: the Arndt-Eistert homologation and the Wolff rearrangement.

Guarracino and her grad school labmates used specialized “funky glassware” like this to generate potentially explosive diazomethane gas that they then had to let condense and drip into their activated compound.
Danielle Guarracino
Guarracino and her grad school labmates used specialized “funky glassware” like this to generate potentially explosive diazomethane gas that they then had to let condense and drip into their activated compound.

As a first-year graduate student, I felt like a big shot performing these named reactions and creating compounds that had never been studied before. The coolest, and most dangerous, part was when we generated diazomethane (note: potentially explosive) gas as part of the process using specialized funky glassware, let it condense and add, dropwise, to our activated compound, and hoped the blast shield could contain any mishaps. We never had a single explosion, even when building construction work was shaking the floors.

How does this relate to water? In the final step of this multistep reaction (shown in the picture), a single molecule of water had the most important role — to make the new C-terminus of the new beta-amino acid and get it in its final format that gave it its amino acid characteristics (mechanism shown under the full reaction, provided). A highly reactive carbene intermediate primed the reaction so that water could slide in and make the molecule a stable beta amino acid ready for use in a peptide.

At this ending step, all the potentially explosive steps, then the separations and purifications culminated as we added this one, simple molecule to bring it home — finishing days of work.

We were so careful through the preceding steps to use dry glassware and try to keep water away; all our work would have been quenched by any significant quantity of water. But in this last stage, toss in some water and we’re finished.

At times, it felt a bit anticlimactic to end my syntheses this way, but such is the power of the water molecule. Indispensable, even as a single-molecule synthetic agent.

The two steps required by each synthesis Danielle Guarracino performed as a first-year graduate student: the Arndt-Eistert homologation and the Wolff rearrangement.
Danielle Guarracino
The two steps required by each synthesis Danielle Guarracino performed as a first-year graduate student: the Arndt-Eistert homologation and the Wolff rearrangement.

A contributing factor

Water is important to my life as a biochemistry professor in another, more personal way. In my sixth year of teaching, I was approaching the last week of biochemistry class for the spring semester, ready for the student group presentations about oxidative phosphorylation, when I was suddenly taken ill with a stuck kidney stone.

For Guarracino, a kidney stone like this one reinforced the importance of drinking enough water.
For Guarracino, a kidney stone like this one reinforced the importance of drinking water.

After hospitalization, surgery and a stent, I learned my lesson about proper hydration. While there are many reasons stones can form, I knew that, at least in part, dehydration contributed. I am generally bad about keeping up drinking water, and I had recently begun exercising again without increasing any fluid intake.

Did this impact my professional life as a biochemistry professor? Yes. And I have spoken to my classes about the benefits of water ever since.

Whether I’m using water in the lab for a critical synthetic step or drinking it before going into the lab to perform said critical step, water has such universal importance.

Not bad for a bent tetrahedral molecule with extensive hydrogen bonding.

Read more

Read more articles and essays about our ASBMB Molecule of the year.

Water, you say?  Sephra Rampersad recalls a great scientist asking, what is the one critical component that could make or break your experiment in any lab?  

What I’ve learned about water, aging and protein quality control  Alice Liu thought an increase in heat shock protein chaperones would prevent misfolding in Huntington’s disease proteins. The results surprised her, and water was the key.

The subtle strength of hydrogen bonds Indu Sridharan remembers how water complicated her atomic force microscopy imaging studies of collagen.

The teaching power of water “I questioned whether children would be very interested in this exercise; there wasn’t much to it.” At an outreach event, Jessica Desamero learns that three cups of water can convey complex science.

Water rescues the enzyme “Sometimes you must bend the rules to get what you want.” In the case of using water in the purification of calpain-2, Dorothy Croall writes, it was worth the risk. 

There are worse things in the water than E. coli E. coli levels determined whether Olympic swimmers could dive into the Seine this past summer. But are these bacteria the best proxy for water contamination? Andrea Luis investigates.

Molecular impressions of water as cuneiform cascade Inspired by "the most elegant depiction of H2O’s colligative features," Thomas Gorrell created a seven-tiered visual cascade of Sumerian characters beginning with the ancient sign for water.

Virtual issue celebrates water in ASBMB journals Check out a dozen gold open-access articles covering exciting research about the society’s 2024 Molecule of the Year.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Danielle Guarracino

Danielle Guarracino is a professor of chemistry at the College of New Jersey and a member of the ASBMB Today editorial advisory board.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

From curiosity to conversation: My first science café
Essay

From curiosity to conversation: My first science café

Dec. 18, 2024

“Why was I so nervous? I’d spoken in hundreds of seminars and classes, in front of large audiences.” But this was the first time Ed Eisenstein was explaining his research “to a crowd of nonscientists relaxing over food and drink at a local tavern.”

‘One word or less’
Essay

‘One word or less’

Dec. 18, 2024

For a long time, Howard Steinman thought this phrase was a joke: “Less than one word is no words, and you can't answer a question without words.”

Can we make grad school more welcoming for all?
Essay

Can we make grad school more welcoming for all?

Dec. 11, 2024

The students and faculty at most of the institutions training the next generation of STEM professionals do not reflect the country’s diversifying demographics, leaving a gap in experience and cultural understanding.

I am not a fake. I am authentically me
Essay

I am not a fake. I am authentically me

Dec. 5, 2024

Camellia Moses Okpodu explains why she believes the term “imposter syndrome” is inaccurate and should be replaced.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

Scientists around the world report millions of new discoveries every year
Essay

Scientists around the world report millions of new discoveries every year

Nov. 24, 2024

Science is a collaborative endeavor, and international teams have contributed to a huge rise in scientific output.