Journal News

Spit-stimulating natural compounds could end dry mouth

John Arnst
Aug. 28, 2020

Dry mouth might not seem like a pressing concern in the middle of a pandemic. However,the condition affects between 10% and 30% of adults and seniors — most often as a side effect of radiation therapy for head and neck cancers or as a symptom of autoimmune diseases such as Sjögren’s syndrome — and can increase a patient’s risk of developing dental decay, tooth demineralization and oral infections.

Chili-Peppers-445x500.jpg
Barbara Kosulin/Unsplash
Nonivamide is one of the active compounds in chile peppers and is more heat-stable
than capsaicin.

In a step toward developing drugs that might treat dry mouth, or xerostomia, researchers at King’s College London performed a nonbiased proteomics analysis of the effects that various natural compounds have on the channels of chemesthetic transient receptors, also known as TRP channels, expressed on the mucosal membrane that lines the inside of the mouth. They published their findings detailing the compounds’ influence on the flow and protein composition of saliva in the journal Molecular & Cellular Proteomics.

The proteomics analysis was the product of a collaboration between Jack Houghton, now a postdoctoral researcher at a University of Cambridge proteomics facility, and the lab of Gordon Proctor, a professor of salivary biology at King’s College London.

“The group has been studying dry mouth from a number of different angles for several years,” Houghton said. “But ultimately, it’s quite an open question still because it’s not just a lack of saliva, it’s also the quality or the content of the saliva that changes, and these changes cause differences in how flavors adhere to the mucosal surfaces in the mouth.”

Where saliva comes from is also a key distinction. The human mouth contains three major salivary glands — the parotid far behind the molars, the sublingual below the tongue and the submandibular beneath the mandibles — and close to 1,000 minor glands dotted across the tongue, palate and lips.

“There are hundreds of minor salivary glands in the lip — you can kind of feel them if you rub your tongue against your lip, the little hard, circular balls,” Houghton said. “We are interested in these minor glands because they are within the mucosal surfaces where we thought that we might see differences or changes in how this saliva adheres.”

Houghton and colleagues applied multibatch quantitative mass spectrometryto saliva collected from volunteers who had rinsed their mouths with a TRP agonist. They found that nonivamide, a capsaicinlike agonist of the TRPV1 channel that is naturally found in chile peppers, and menthol, an agonist of the TRMP8 channel, both caused an increase in the secretion of digestive proteins and the flow of saliva in all parts of volunteers’ mouths, including the minor glands. As both compounds are alkaloids, they would not carry the same risks as acidic tastants that stimulate salivary secretion but erode enamel tissues.

This expands on previous findings that agonists of salivary channels such as piperine, an alkaloid found in black peppers, and capsaicin, the active compound in chile peppers that has been explored for its role in mitigating obesity, high blood pressure and neuropathic pain, are able to increase the flow of saliva in patients’ mouths.

Houghton and his colleagues plan to examine the mechanisms the TRP agonists use to modify the rheological properties of saliva. Fortunately, the saliva they’ll be analyzing was collected two years ago – long before the COVID-19 pandemic limited access to both research labs and willing volunteers.

“The next steps have already been carried out, but haven’t been published yet,” Houghton said. “They are essentially further investigations into the direct stimulation of the saliva gland cells by the TRP agonists.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.